If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-15=0
a = 5; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·5·(-15)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*5}=\frac{0-10\sqrt{3}}{10} =-\frac{10\sqrt{3}}{10} =-\sqrt{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*5}=\frac{0+10\sqrt{3}}{10} =\frac{10\sqrt{3}}{10} =\sqrt{3} $
| 8x−4+9x+17=180 | | 2.3/4x=33/2 | | X(5x-7)=(5x+4)(x-3) | | 4x-(3x+2)=4x-14 | | 4x+22+7x-9=180 | | 9x-15=3/4 | | Y-7/5=x | | 0.5z+6=1.5(z+6) | | 7x^2-90x+160=0 | | y=-1.5y | | 5/8=x+3/9 | | 4(p-1)=2(p+1) | | 3+x=15+4x | | 3(h+6)=6(h+2) | | 4^(x+1)+4^(1-x)=0 | | 3x-(5x-7)=9 | | 1/2x-4=1/3x-1 | | P=2(13+3x-6) | | 3×-2=6x+5 | | 15+29=x | | x+14/5-2=2 | | 186/x=132/56 | | (1+4x)²-(5x-2)(1+4x)=0 | | 0=-2x^2+3x-7 | | 5/3*x+1-7=2*x/15-1/5 | | 5/3x+1-7=2x/15-1/5 | | 32+-18x+-17x2+2x3+x4=0 | | 147/10x1.922= | | 3t-6=2t-4 | | 7x+1=10x-10 | | X3-10x+3=0 | | X(5x)=25.5 |